1,577 research outputs found

    Increased large conductance calcium-activated potassium (BK) channel expression accompanied by STREX variant downregulation in the developing mouse CNS

    Get PDF
    BACKGROUND: Large conductance calcium- and voltage activated potassium (BK) channels are important determinants of neuronal excitability through effects on action potential duration, frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1, which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless (ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape their electrical properties during development. However, whether differential splicing of BK channel variants occurs during development of the mammalian CNS has not been examined. RESULTS: Using quantitative real-time polymerase chain reaction (RT-PCR) Taqman™ assays, we demonstrate that total BK channel transcripts are up regulated throughout the murine CNS during embryonic and postnatal development with regional variation in transcript levels. This upregulation is associated with a decrease in STREX variant mRNA expression and an upregulation in ZERO variant expression. CONCLUSION: As BK channel splice variants encode channels with distinct functional properties the switch in splicing from the STREX phenotype to ZERO phenotype during embryonic and postnatal CNS development may provide a mechanism to allow BK channels to control distinct functions at different times of mammalian brain development

    Density of states of a type-II superconductor in a high magnetic field: Impurity effects

    Full text link
    We have calculated the density of states N(ω)N(\omega) of a dirty but homogeneous superconductor in a high magnetic field. We assume a dilute concentration of scalar impurities and find how N(ω)N(\omega) behaves as one crosses from the weak scattering to the strong scattering limit. At low energies, N(ω)ω2N(\omega)\sim \omega ^2 for small values of the impurity concentration and scattering strength. When the disorder becomes stronger than some critical value, a finite density of states is created at the Fermi surface. These results are a consequence of the gapless nature of the quasiparticle excitation spectrum in a high magnetic field.Comment: 20 pages in RevTeX, 4 figures, to appear in Phys. Rev. B (July 1, 1997

    TB STIGMA – MEASUREMENT GUIDANCE

    Get PDF
    TB is the most deadly infectious disease in the world, and stigma continues to play a significant role in worsening the epidemic. Stigma and discrimination not only stop people from seeking care but also make it more difficult for those on treatment to continue, both of which make the disease more difficult to treat in the long-term and mean those infected are more likely to transmit the disease to those around them. TB Stigma – Measurement Guidance is a manual to help generate enough information about stigma issues to design and monitor and evaluate efforts to reduce TB stigma. It can help in planning TB stigma baseline measurements and monitoring trends to capture the outcomes of TB stigma reduction efforts. This manual is designed for health workers, professional or management staff, people who advocate for those with TB, and all who need to understand and respond to TB stigma

    Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor

    Full text link
    We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor'kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eight order against an exact numerical solution of the corresponding Bogoliubov-de Gennes equations. The perturbation theory is found to describe the onset of superconductivity well close to the transition point Hc2H_{c2}. Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA-oscillations below Hc2H_{c2}. Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore we have investigated the recently debated issue of a possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004. Several sections changed or added, including a section on the effect of spin and the effect of a conserved number of particles. To be published in Phys. Rev.

    Theory of de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation in type-II superconductors are developed based on the Bogoliubov-de Gennes equations for vortex-lattice states. As the pair potential grows through the superconducting transition, each degenerate Landau level in the normal state splits into quasiparticle bands in the magnetic Brillouin zone. This brings Landau-level broadening, which in turn leads to the extra dHvA oscillation damping in the vortex state. We perform extensive numerical calculations for three-dimensional systems with various gap structures. It is thereby shown that (i) this Landau-level broadening is directly connected with the average gap at H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra dHvA oscillation attenuation is caused by the broadening around each extremal orbit. These results imply that the dHvA experiment can be a unique probe to detect band- and/or angle-dependent gap amplitudes. We derive an analytic expression for the extra damping based on the second-order perturbation with respect to the pair potential for the Luttinger-Ward thermodynamic potential. This formula reproduces all our numerical results excellently, and is used to estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn, and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the one through a specific-heat measurement, indicating presence of gap anisotropy in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure

    Local and global gravitational aspects of domain wall space-times

    Full text link
    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between non-equal and non-positive cosmological constants on each side of the wall. These vacuum domain walls fall in three classes depending on the value of their energy density σ\sigma: (1)\ extreme walls with σ=σext\sigma = \sigma_{{\text{ext}}} are planar, static walls corresponding to supersymmetric configurations, (2)\ non-extreme walls with σ=σnon>σext\sigma = \sigma_{{\text{non}}} > \sigma_{{\text{ext}}} correspond to expanding bubbles with observers on either side of the wall being {\em inside\/} the bubble, and (3)\ ultra-extreme walls with σ=σultra<σext\sigma = \sigma_{{\text{ultra}}} < \sigma_{{\text{ext}}} represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, non-extreme, and ultra-extreme walls exhibit no, repulsive, and attractive effective ``gravitational forces,'' respectively. These ``gravitational forces'' are global effects not caused by local curvature. Since the non-extreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessable to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe. We also discuss the global space-time structure of these singularity free space-times and point out intriguing analogies with the causal structure of black holes.Comment: UPR-565-T, 26 REVTEX pages, 10 figures available upon reques

    In-street wind direction variability in the vicinity of a busy intersection in central London

    Get PDF
    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges

    Interspecific Hybridization Yields Strategy for South Pacific Filariasis Vector Elimination

    Get PDF
    Lymphatic filariasis (LF) is a global health problem, with over 120 million people affected annually. The current LF elimination program is focused on administering anti-filarial drugs to the entire at-risk population via annual mass drug administration (MDA). While the MDA program is proving effective in many areas, other areas may require augmentative measures such as vector control. An example of the latter is provided by some regions of the South Pacific where Aedes polynesiensis is the primary vector. Here, we describe a novel vector control approach based upon naturally occurring Wolbachia bacterial infections. Wolbachia are endosymbiotic intracellular bacteria that cause a form of sterility known as cytoplasmic incompatibility. We show that introgression crosses with mosquitoes that are infected with a different Wolbachia type results in an A. polynesiensis strain (designated ‘CP’) that is incompatible with naturally infected mosquitoes. No difference in mating competitiveness is observed between CP males and wild type males in laboratory assays. The results support continued development of the strategy as a tool to improve public health
    corecore